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Velocity slips may occur as a fluid flows over a solid surface in the nanometer scale. The slip length Ls,
characterizing the degree of slip, is usually used to describe the velocity boundary condition at the fluid/solid
interface. In this work, we show that for a given wall-fluid system, the slip length Ls generally varies with the
system temperature T. In particular, we show that it is possible to create a pair of solid wall and fluid systems,
in which the velocity slip becomes rather small and independent of temperature.
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Although the assumption of the classical no-slip boundary
condition works well when the classical hydrodynamic �i.e.,
the Navier-Stokes� equations are used to model macroscopic
flow systems, having a specific boundary condition for fluid
flows past a solid surface in the nanometer scale is a critical
ingredient for predicting the flow behavior in nanofluidic de-
vices, which are now widespread and finding uses in many
scientific and industrial contexts. Both numerical simulations
and experimental data have revealed that complicated slip
phenomena could occur at the fluid-solid interface, indicat-
ing that the mechanics of momentum transfer in the interfa-
cial region is different from that in the bulk flow region.
From the molecular point of view, the motion of a fluid mol-
ecule near a solid interface is influenced not only by the
other neighboring fluid molecules, but also by the neighbor-
ing solid molecules, through intermolecular interactions.

The degree of velocity slip can be quantified by the so-
called slip length Ls, which is defined as the distance from
the wall where the linearly extrapolated tangential velocity
matches that of the wall. Ls is actually a reflection of the
momentum transfer between the wall and the fluid, and de-
pends on a number of factors. The dependence on the Knud-
sen number of Ls for dilute gases has been extensively stud-
ied since the pioneering work by Maxwell �1�. Studies on the
slip phenomena of dense fluids have also been performed
recently �2–4�. These studies demonstrate that large velocity
slip may also occur at the fluid-solid interface, although the
Knudsen number is small, and Ls usually depends on the
wettability of the fluid-solid interface in the linear regime
where the shear rate �̇ is small �5�.

It is well understood that the wettability is usually
temperature-dependent, and the temperature may also have
an influence on the collision frequency between molecules,
and thus on the momentum exchange between the fluid and
the wall. It is expected that Ls would change with tempera-
ture.

The wettability is, in fact, a reflection of the competition
between the attractive parts of the fluid-fluid potential and
the fluid-wall potential energies. Since the wettability is
temperature-dependent, it is expected that Ls would change
with temperature. Furthermore, the temperature may also af-

fect the slip length through the repulsive parts of the inter-
action potentials. A natural question arises then: how does
the temperature of the system, or the kinetic energy of the
fluid molecules, affect the slippage? Knowledge about this
question is of vital importance for dense fluid flows at small
scales, as the flow boundary condition that works well at a
particular temperature may cause a totally different flow dy-
namic behavior in a system at a different temperature. Al-
though the influence of temperature on the slippage was
mentioned in several previous studies �6�, there is as yet no
consensus on how temperature affects slip behavior. In this
work, we aim to study the temperature dependence of the
slip length of a dense fluid in the nanometer scale.

We consider the Couette flow of a dense fluid confined
between two parallel walls in the y-z plane, where the fluid
molecules interact with a 12-6 Lennard-Jones �LJ� potential,
V�r�=4���� /r�12− �� /r�6�, with � representing the interac-
tion energy and � the interaction range. The two walls are
located at x=0 and x=H=10�, respectively, and each exerts
a 10-4 potential �7�, Vw�r�=2��w�0.4�� /r�10−C�� /r�4�. The
fluid in the slit is sheared by moving the two walls at x=0
and x=H with velocities −U and U in the y direction, respec-
tively.

Such a system is usually studied by employing the
molecular-dynamics �MD� or Monte Carlo �MC� simula-
tions, which are rather computationally expensive. Kinetic
approach is a possible alternative. It is clear that the Boltz-
mann theory for a dilute gas is unsuitable for this dense fluid
system. The classical Enskog theory for homogeneous dense
fluids is also inapplicable since in the nanoscale the molecu-
lar size becomes comparable with the system dimension, and
the fluid-fluid and fluid-solid interactions become so signifi-
cant that strong inhomogeneity may be induced. At present,
there exist two kinetic theories for dense inhomogeneous flu-
ids �8–10�. Unfortunately, both theories are rather compli-
cated and are difficult to use.

Recently, a simple but robust kinetic model for dense in-
homogeneous fluids was proposed by the authors �11�. This
kinetic model has been shown to be able to predict both
equilibrium and dynamical behaviors of a fluid in the mo-
lecular scale that are in quantitative agreement with
molecular-dynamics and Monte Carlo results. It is expected
that the model can be a promising powerful tool for probing
the statistic and dynamic behavior of nanoscale fluids. In this*Corresponding author. Email address: metzhao@ust.hk
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work, we use this model to explore the velocity slip behavior
at a fluid-solid surface in the nanometer scale.

The kinetic model can be expressed as �11�

�t f + � · �rf −
1

m
�r�Vext + Vm� · ��f = ��f� , �1�

where f�r ,� , t� is the single-particle distribution function for
molecules with velocity � at position r and time t, and m is
the molecular mass. Vext�r�=Vw�x�+Vw�H−x� is the total ex-
ternal potential coming from the two walls; Vm relates to the
LJ potential V by Vm�r�=�n�r+r��Vatt��r���dr�, where n is the
local number density n=�fd�, and Vatt is the long-range at-
tractive part of V, which can be obtained following some
systemic methods such as that proposed by Barker and
Henderson �BH� �12� or that by Weeks et al. �WCA� �13�.
The repulsive portion of V, Vrep, is simulated by a hard-
sphere potential with an effective diameter �e, which is rep-
resented by the collision operator �. In the present study, the
LJ potential V is split according to the BH theory, where
the effective hard-sphere diameter is approximated by �e
=��1+0.2977T*� / �1+0.33163T*+1.04771−3T*2� with T*

=kBT /� �14�. It is also found that the WCA separation gives
results quantitatively similar to those predicted by the BH
method. Since the hard-sphere potential in the kinetic model
is just an approximation to the repulsive part of the intermo-
lecular potentials, the temperature-dependent diameter �e in-
dicates that temperature also affects the latter.

In the kinetic model �11�, � is further approximated as
�=−�−1�f − f �eq��+Jex, where � represents a velocity-
independent relaxation time, and Jex is given by

Jex = − V0f �eq��� − u� · �2A	hs�n̄� + Bn̄� , �2�

with 	�n̄� being the radial distribution function �RDF� for a
homogeneous hard-sphere fluid of density n̄, and n̄
=�w�r��n�r+r��dr� being the average density of n with a
weight function w�r�. In this study, we use the RDF
proposed by Carnahan and Sterling �15�, 	�n�
= �1−nV0 /8� / �1−nV0 /4�3, and n̄ is determined using the
Tarazona average method �16�. The two vectors A and B are
defined by A�r�=D−1��r��
�/2r�n̄�r+r��dr� and B�r�
=D−1��r��
�/2r�	hs�n̄�r+r���dr�, with D=��5 /120. f �eq�

=n�2�kBT /m�−3/2exp�−m��−u�2 /2kBT� is the local equilib-
rium distribution function, where u=n−1��fd� is the fluid
velocity. The relaxation time � in the collision operator is
determined based on the local average density model
�LADM� �17�, i.e., ��r�=��n̄� /nkBT, where ��n� is the vis-
cosity for a homogeneous dense fluid �18�, ��n�
=�0nV0�Y−1+0.8+0.7614Y� with �0= �5.0/16�e

2��kBT /�,
Y =nV0	hs�n�, and V0=2��e

3 /3.
A Chapman-Enskog analysis of the kinetic equation �1�

leads to the following equations for the conservative vari-
ables n and u:

�t�mn� + � · �mnu� = 0, �3a�

�t�mnu� + � · �mnuu� + kBT � n + n � �Vext + Vm�

= � · ���n̄��u� + nkBT�2Ā	hs�n̄� + B̄n̄�V0, �3b�

where kB is the Boltzmann constant and �u= ��u+ ��u�T�. It
should be recognized that Eq. �3� explicitly includes the ef-
fects of the fluid-wall and fluid-fluid interactions and the
induced inhomogeneity, whereas these effects are not in-
cluded in the classical Navier-Stokes equations but are effec-
tively incorporated into the boundary condition.

For the steady planar Couette flow described earlier,
the momentum equation �3b� in the x and y directions be-
comes d�ln n+ �Vext+Vm� /kBT� /dx=−�2Ax	�n̄�+Bxn̄�V0 and
d���n̄�dv /dx� /dx=0, respectively, where v is the velocity
component in the y direction. These two equations can be
solved numerically to obtain the density and velocity distri-
butions of the Couette flow. The first equation is solved un-
der the condition that the pore-averaged density is a constant,
i.e., n0=�0

Hn�x�dx /H=const, and the second equation is
solved under the assumption that the fluid molecules in con-
tact with the wall have the same velocity as the wall mol-
ecules. Such a treatment is consistent with the analysis done
by Koplik et al. �19�. In Fig. 1, we compare the results pre-
dicted by the kinetic model with the MD results from Ref.
�17� with C=1.0 and �w /�=3.2 or 0.8 with H=7.178�. As
can be seen, the predicted results are in excellent agreement
with those by the MD simulations.

We now use the kinetic model to study the effect of tem-
perature on the flow slippage. We change the interaction pa-
rameter C in the wall-fluid potential Vwf from 0 to 1 to model
a repulsive �nonwetting� or an attractive �wetting� wall. The
slip length Ls is determined from the definition Ls=us / �̇,
which reduces to �2U / �̇−h� /2 for the Couette flow �5�. Here
h is the actual channel width occupied by the fluid, which is
usually smaller than H because the fluid molecules can never

FIG. 1. The density �top� and velocity �bottom� distributions of
a Lennard-Jones fluid confined between two 10-4 walls with a sepa-
ration of H=7.178�. Results are obtained at temperature
T=1.1� /kB, pore-averaged density n0=�0

Hn�x�dx /H=0.519�−3, and
C=1.0. Solid lines are results predicted by the kinetic model �Eq.
�3b��, and symbols are the MD results from Ref. �17�. In the top
panel, the data for �w=3.2� are shifted for clarity.
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arrive at the wall due to the repulsive force exerted by the
wall �see Fig. 1�. h is measured as H−2�, where � is the
distance between the first fluid layer and the wall. In our
calculations, � is determined by looking for the first point x
near the wall at which n�x�10−6.

Figure 2 presents the measured slip length Ls as a function
of parameter C at three selected temperatures T*=kBT /�. As
can be seen, large slip always occurs for small values of C,
and Ls decreases with increasing C at each temperature. Such
a phenomenon was also observed in previous MD studies
�2�, and was related to the wettability of the wall-fluid sys-
tem. For a small C, the fluid is nonwetting on the solid sur-
face, and fluid molecules can escape easily from the wall,
which will result in a large slippage. On the other hand, as C
increases, the wettability of the fluid changes accordingly: a
transition from nonwetting to partial wetting and finally to
complete wetting may occur. As C becomes sufficiently
large, the attractive force of the wall is so strong that the
fluid molecules may be trapped by the wall molecules and
move with the solid surface. Under such a circumstance, the
slippage occurs between the layers of fluid molecules, rather
than between the first fluid layer and the wall. Hence, the
so-called stick slip can be observed.

We can also observe from Fig. 2 that in general the tem-
perature has a strong influence on the slipping. With the
same fluid-wall potential, the magnitude of Ls at a higher
temperature is usually smaller than that at a lower tempera-
ture. To see this more clearly, we further measured the
changes of Ls as T* ranges from 0.7 to 3.0, for a wall with a
weak attractive potential �C=0.1� and a wall with a strong
attractive potential �C=1.0� as �w=3.2�. The variation of Ls

with temperature T* at different fluid densities is shown in
Fig. 3, which clearly shows temperature affects the slip
length: The magnitude of Ls, either for normal slip or stick
slip, usually decreases with increasing temperature. Further-
more, it is observed from Fig. 3 that Ls tends to become less
dependent on temperature with increasing temperature.

The temperature dependence of the slip length reflects the

competition between the kinetic energy of the fluid mol-
ecules and the potential energy of the wall. For a given fluid,
the wall potential causes the fluid molecules to form some
inhomogeneous structures, while the kinetic energy of the
fluid molecules drives them to be uniform. For a wall with a
smaller C, the attractive force is weaker and the fluid mol-
ecules can escape from the wall easily under the interaction
with other fluid molecules. At low temperatures, most of the
fluid molecules are inactive and may be accumulated in the
central region of the channel, as shown in Fig. 4. Therefore,
in such a situation, the momentum transfer between the wall
and the fluid will become less efficient and results in a large
velocity slip between the fluid and the wall. With an increase
in temperature, the fluid molecules becomes more active and
some of them in the central region are driven to the region
near the wall �see Fig. 4�. As a result, the momentum transfer
between the wall and the fluid becomes more efficient, and
thus the velocity slip between them decreases with increas-
ing temperature. As temperature is sufficiently high, the dis-
tribution of the fluid molecules is nearly unaffected by tem-
perature, and at this time the slip length Ls will not change
any more with temperature.

The situation for a wall with larger C is quite different. In

FIG. 2. The slip length �Ls� as a function of the fluid-wall inter-
action parameter C at different temperatures.

FIG. 3. Slip length as a function of the temperature with differ-
ent interaction parameter C at different densities ��w=3.2��.

FIG. 4. Density distribution at different temperatures ��w=3.2�,
n0�3=0.6�.
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this case, the attractive force of the wall is so strong that
there exists a layer of fluid molecules that stick to and move
with the wall, as shown in Fig. 4. The slip under such a
situation occurs mainly between the fluid layers rather than
the first fluid layer and the wall, and the slip length usually
takes negative values. As the temperature increases and the
fluid molecules move faster, some of the molecules in the
near-wall region will enter the central region �see Fig. 4�. As
a result, the degree of stick slip becomes weak and �Ls� de-
creases with increasing temperature.

Another interesting phenomenon is also observed from
Fig. 2: For a given fluid density n0 and a wall-fluid interac-
tion energy �w, the isothermal lines intersect at the same
point, say �C0 ,Ls0�, meaning that as C=C0, the slip length is
independent of temperature. Furthermore, it is also noticed
that the different �w results in almost the same Ls0. To see
this phenomenon more clearly, we present the slip length
against temperature with C=C0 in Fig. 5. The magnitude of
Ls0 is of about 0.1–0.2�, which is much smaller than the
channel size. This means that in such a particular pair of
solid wall and fluid systems, the classical nonslip boundary
condition can be used.

We also find that C0 depends on the energy �w for a given
n0 following a power law as

C0 � �w
−3/5. �4�

To see the physical meaning of Eq. �4�, we rewrite the 10-4
wall-fluid potential Vw�r� as Vw�r�=2��w� �0.4��� /r�10

− ��� /r�4�, where ��=�C−1/6 and �w� =�wC5/3. Therefore,
when C=C0, the wall-fluid potential will have the same
rescaled interaction energy �w� . We wish to point out that this
interesting phenomenon is also observed for other values of

n0 and �w, and thus we speculate that it may be a peculiar
phenomenon in nanofluidics.

In summary, we find that temperature has a complicated
influence on the velocity slip behavior as a dense fluid flows
over a solid wall in the nanometer scale. For a given fluid, if
the wall has a weak attractive energy, the fluid velocity un-
dergoes a normal slip, while if attractive energy is strong, the
fluid velocity usually undergoes a stick slip. The degree of
both kinds of slip generally decreases with increasing the
system temperature. Yet there exist some systems consisting
of a particular pair of solid and fluid in which the slip be-
comes independent of temperature.
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